Recent directions for offensive language detection are hierarchical modeling, identifying the type and the target of offensive language, and interpretability with offensive span annotation and prediction. These improvements are focused on English and do not transfer well to other languages because of cultural and linguistic differences. In this paper, we present the Korean Offensive Language Dataset (KOLD) comprising 40,429 comments, which are annotated hierarchically with the type and the target of offensive language, accompanied by annotations of the corresponding text spans. We collect the comments from NAVER news and YouTube platform and provide the titles of the articles and videos as the context information for the annotation process. We use these annotated comments as training data for Korean BERT and RoBERTa models and find that they are effective at offensiveness detection, target classification, and target span detection while having room for improvement for target group classification and offensive span detection. We discover that the target group distribution differs drastically from the existing English datasets, and observe that providing the context information improves the model performance in offensiveness detection (+0.3), target classification (+1.5), and target group classification (+13.1). We publicly release the dataset and baseline models.
translated by 谷歌翻译
我们介绍韩语了解评估(KLUE)基准。 Klue是8个韩国自然语言理解(nlu)任务的集合,包括主题分类,语言典的相似性,自然语言推断,命名实体识别,关系提取,依赖解析,机器阅读理解和对话状态跟踪。我们从各种源语料库中展开的所有任务,同时尊重版权,以确保任何没有任何限制的人的可访问性。考虑到道德考虑,我们仔细设计了注释协议。随着基准任务和数据,我们为每个任务提供适用的评估指标和微调配方,为每项任务进行预训练语言模型。我们还释放了预用的语言模型(PLM),Klue-Bert和Klue-Roberta,以帮助在KLUE上再现基线模型,从而促进未来的研究。我们通过拟议的Klue基准套件从初步实验中进行了一些有趣的观察,已经证明了这款新的基准套件的有用性。首先,我们找到了klue-roberta-mantring的其他基线,包括多语种plms和现有的开源韩国plms。其次,即使我们从预先预测语料库中取代个人身份信息,我们也会看到性能下降最小,这表明隐私和NLU能力并不彼此可能。最后,我们发现,使用BPE标记与语素级预象的组合,在涉及语素级标记,检测和发电的任务中是有效的。除了加速韩国人NLP研究外,我们的创建Klue的全面文件将有助于将来为其他语言创建类似的资源。 klue在https://klue-benchmark.com上提供。
translated by 谷歌翻译
Crowdsourcing has emerged as an effective platform to label a large volume of data in a cost- and time-efficient manner. Most previous works have focused on designing an efficient algorithm to recover only the ground-truth labels of the data. In this paper, we consider multi-choice crowdsourced labeling with the goal of recovering not only the ground truth but also the most confusing answer and the confusion probability. The most confusing answer provides useful information about the task by revealing the most plausible answer other than the ground truth and how plausible it is. To theoretically analyze such scenarios, we propose a model where there are top-two plausible answers for each task, distinguished from the rest of choices. Task difficulty is quantified by the confusion probability between the top two, and worker reliability is quantified by the probability of giving an answer among the top two. Under this model, we propose a two-stage inference algorithm to infer the top-two answers as well as the confusion probability. We show that our algorithm achieves the minimax optimal convergence rate. We conduct both synthetic and real-data experiments and demonstrate that our algorithm outperforms other recent algorithms. We also show the applicability of our algorithms in inferring the difficulty of tasks and training neural networks with the soft labels composed of the top-two most plausible classes.
translated by 谷歌翻译
Nowadays, fake news easily propagates through online social networks and becomes a grand threat to individuals and society. Assessing the authenticity of news is challenging due to its elaborately fabricated contents, making it difficult to obtain large-scale annotations for fake news data. Due to such data scarcity issues, detecting fake news tends to fail and overfit in the supervised setting. Recently, graph neural networks (GNNs) have been adopted to leverage the richer relational information among both labeled and unlabeled instances. Despite their promising results, they are inherently focused on pairwise relations between news, which can limit the expressive power for capturing fake news that spreads in a group-level. For example, detecting fake news can be more effective when we better understand relations between news pieces shared among susceptible users. To address those issues, we propose to leverage a hypergraph to represent group-wise interaction among news, while focusing on important news relations with its dual-level attention mechanism. Experiments based on two benchmark datasets show that our approach yields remarkable performance and maintains the high performance even with a small subset of labeled news data.
translated by 谷歌翻译
Any classifier can be "smoothed out" under Gaussian noise to build a new classifier that is provably robust to $\ell_2$-adversarial perturbations, viz., by averaging its predictions over the noise via randomized smoothing. Under the smoothed classifiers, the fundamental trade-off between accuracy and (adversarial) robustness has been well evidenced in the literature: i.e., increasing the robustness of a classifier for an input can be at the expense of decreased accuracy for some other inputs. In this paper, we propose a simple training method leveraging this trade-off to obtain robust smoothed classifiers, in particular, through a sample-wise control of robustness over the training samples. We make this control feasible by using "accuracy under Gaussian noise" as an easy-to-compute proxy of adversarial robustness for an input. Specifically, we differentiate the training objective depending on this proxy to filter out samples that are unlikely to benefit from the worst-case (adversarial) objective. Our experiments show that the proposed method, despite its simplicity, consistently exhibits improved certified robustness upon state-of-the-art training methods. Somewhat surprisingly, we find these improvements persist even for other notions of robustness, e.g., to various types of common corruptions.
translated by 谷歌翻译
The number of international benchmarking competitions is steadily increasing in various fields of machine learning (ML) research and practice. So far, however, little is known about the common practice as well as bottlenecks faced by the community in tackling the research questions posed. To shed light on the status quo of algorithm development in the specific field of biomedical imaging analysis, we designed an international survey that was issued to all participants of challenges conducted in conjunction with the IEEE ISBI 2021 and MICCAI 2021 conferences (80 competitions in total). The survey covered participants' expertise and working environments, their chosen strategies, as well as algorithm characteristics. A median of 72% challenge participants took part in the survey. According to our results, knowledge exchange was the primary incentive (70%) for participation, while the reception of prize money played only a minor role (16%). While a median of 80 working hours was spent on method development, a large portion of participants stated that they did not have enough time for method development (32%). 25% perceived the infrastructure to be a bottleneck. Overall, 94% of all solutions were deep learning-based. Of these, 84% were based on standard architectures. 43% of the respondents reported that the data samples (e.g., images) were too large to be processed at once. This was most commonly addressed by patch-based training (69%), downsampling (37%), and solving 3D analysis tasks as a series of 2D tasks. K-fold cross-validation on the training set was performed by only 37% of the participants and only 50% of the participants performed ensembling based on multiple identical models (61%) or heterogeneous models (39%). 48% of the respondents applied postprocessing steps.
translated by 谷歌翻译
Proximal Policy Optimization (PPO) is a highly popular policy-based deep reinforcement learning (DRL) approach. However, we observe that the homogeneous exploration process in PPO could cause an unexpected stability issue in the training phase. To address this issue, we propose PPO-UE, a PPO variant equipped with self-adaptive uncertainty-aware explorations (UEs) based on a ratio uncertainty level. The proposed PPO-UE is designed to improve convergence speed and performance with an optimized ratio uncertainty level. Through extensive sensitivity analysis by varying the ratio uncertainty level, our proposed PPO-UE considerably outperforms the baseline PPO in Roboschool continuous control tasks.
translated by 谷歌翻译
Diffusion-based generative models have achieved remarkable success in image generation. Their guidance formulation allows an external model to plug-and-play control the generation process for various tasks without fine-tuning the diffusion model. However, the direct use of publicly available off-the-shelf models for guidance fails due to their poor performance on noisy inputs. For that, the existing practice is to fine-tune the guidance models with labeled data corrupted with noises. In this paper, we argue that this practice has limitations in two aspects: (1) performing on inputs with extremely various noises is too hard for a single model; (2) collecting labeled datasets hinders scaling up for various tasks. To tackle the limitations, we propose a novel strategy that leverages multiple experts where each expert is specialized in a particular noise range and guides the reverse process at its corresponding timesteps. However, as it is infeasible to manage multiple networks and utilize labeled data, we present a practical guidance framework termed Practical Plug-And-Play (PPAP), which leverages parameter-efficient fine-tuning and data-free knowledge transfer. We exhaustively conduct ImageNet class conditional generation experiments to show that our method can successfully guide diffusion with small trainable parameters and no labeled data. Finally, we show that image classifiers, depth estimators, and semantic segmentation models can guide publicly available GLIDE through our framework in a plug-and-play manner.
translated by 谷歌翻译
This work introduces alternating latent topologies (ALTO) for high-fidelity reconstruction of implicit 3D surfaces from noisy point clouds. Previous work identifies that the spatial arrangement of latent encodings is important to recover detail. One school of thought is to encode a latent vector for each point (point latents). Another school of thought is to project point latents into a grid (grid latents) which could be a voxel grid or triplane grid. Each school of thought has tradeoffs. Grid latents are coarse and lose high-frequency detail. In contrast, point latents preserve detail. However, point latents are more difficult to decode into a surface, and quality and runtime suffer. In this paper, we propose ALTO to sequentially alternate between geometric representations, before converging to an easy-to-decode latent. We find that this preserves spatial expressiveness and makes decoding lightweight. We validate ALTO on implicit 3D recovery and observe not only a performance improvement over the state-of-the-art, but a runtime improvement of 3-10$\times$. Project website at https://visual.ee.ucla.edu/alto.htm/.
translated by 谷歌翻译
Recent studies have proposed a unified user modeling framework that leverages user behavior data from various applications. Most benefit from utilizing users' behavior sequences as plain texts, representing rich information in any domain or system without losing generality. Hence, a question arises: Can language modeling for user history corpus help improve recommender systems? While its versatile usability has been widely investigated in many domains, its applications to recommender systems still remain underexplored. We show that language modeling applied directly to task-specific user histories achieves excellent results on diverse recommendation tasks. Also, leveraging additional task-agnostic user histories delivers significant performance benefits. We further demonstrate that our approach can provide promising transfer learning capabilities for a broad spectrum of real-world recommender systems, even on unseen domains and services.
translated by 谷歌翻译